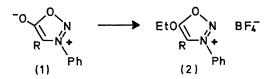
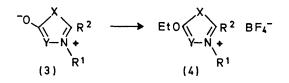
Alkylation of Mesoionic Ring Systems with Triethyloxonium Fluoroborate


By K. T. Potts,* E. HOUGHTON, and S. HUSAIN

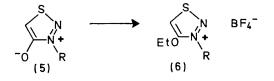
(Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12181)


Summary Ethylation of the exocyclic oxygen atom in several five-membered mesoionic ring systems occurred readily with triethyloxonium fluoroborate.

THERE has been no report, except for the 1,2,3-triazole system,¹ that mesoionic ring systems with exocyclic oxygen atoms undergo O-alkylation with alkyl halides or alkyl sulphates. This failure to undergo ready alkylation is inconsistent with betaine-like character,² though it is not unexpected as the bond order of the carbon-oxygen bond indicates the presence of considerable double-bond character.³ On the other hand, systems with exocyclic sulphur atoms readily undergo alkylation.⁴

We have found that alkylation at the exocyclic atom in several mesoionic ring systems occurs very readily using triethyloxonium fluoroborate.⁵ Thus, 3-phenylsydnone⁶ (1; R = H) in methylene chloride with Meerwein's reagent overnight at room temperature gave, on diluting the reaction mixture with anhydrous ether, colourless prisms (76%) from ethanol of 5-ethoxy-3-phenyl-1,2,3-oxadiazolium fluoroborate[†] (2; R = H), m.p. 68-70° [v (N = N) 1770, ν (COC) 1200–1020 (b) cm⁻¹; u.v. max (MeOH) 280 nm, log ϵ 3.88; n.m.r. (CDCl₃) τ 8.51 (t, 3H, I 7.0 Hz, -OCH₂CH₃), 5.20 (q, 2H, J 7.0 Hz, -OCH₂CH₃), 1.98-2.50 (m, 5H, ArH), 1.48 (s, 1H, 4-H)]. Similarly, 5-ethoxy-4methyl-3-phenyl-1,2,3-oxadiazolium fluoroborate (2; R =Me) was obtained in 70% yield as colourless prisms, m.p. $107-109^{\circ}$ [v (N = N) 1775, v (COC) 1230-1030 (b) cm⁻¹; u.v. max (MeOH) 287 nm, log e 3.91; n.m.r. [(CD₃)₂SO] τ 8.66 (t, 3H, J 7.0 Hz, -OCH₂CH₃), 5.65 (q, 2H, J 7.0 Hz, -OCH₂CH₃), 7.97 (s, 3H, 4-Me), 2.24 (s, 5H, ArH)] from anhydro-5-hydroxy-4-methyl-3-phenyl-1,2,3-oxadiazolium hydroxide⁶ (1; R = Me). Heating of these salts above their m.p.'s regenerated the corresponding sydnone.

Other mesoionic ring systems containing an exocyclic oxygen atom in a similar environment were also found to undergo ready alkylation under these conditions. Thus, anhydro-5-hydroxy-3-methyl-2-phenylthiazolium hydroxide⁷ (3; $R^1 = Me$, $R^2 = Ph$, X = S, Y = CH) readily gave 5-ethoxy-3-methyl-2-phenylthiazolium fluoroborate (4; R¹ = Me, R^2 = Ph, X = S, Y = CH) as colourless needles (70%), m.p. 58–60° [ν (C=N) 1600, ν (COC) 1200–1010 (b) cm⁻¹; u.v. max (MeOH) 302 nm, log ϵ 4.08; n.m.r. $[(CD_3)_2SO] \tau 8.54$ (t, 3H, J 7.0 Hz, $-OCH_2CH_3$), 5.98 (s, 3H, NCH_3), 5.60 (q, 2H, J 7.0 Hz, $-OCH_2CH_3$), 2.00–2.33 (broad s, 5H, ArH), 1.83 (s, 1H, 4-H)]. anhydro-5-Hydroxy-3-methyl-2-phenyl-1,3,4-thiadiazolium hydroxide⁸ (3; $\mathbb{R}^1 =$ Me; $R^2 = Ph$, X = S, Y = N) was also converted into its salt (4; $R^1 = Me$, $R^2 = Ph$, X = S, Y = N) which formed colourless needles (100%) from ethanol, m.p. 123-124° [ν (C=N) 1675, v (COC) 1280-1100 (b) cm⁻¹; u.v. max (MeOH) 278 nm, log ϵ 4.01; n.m.r. [(CD₃)₂SO] τ 8.50 (t, 3H, J 7.0 Hz, -OCH₂CH₃), 5.87 (s, 3H, NCH₃), 5.29 (q, 2H, J 7.0 Hz, -OCH₂CH₃), 2.18 (m, 5H, ArH)]. The mesoionic compound could be regenerated from the salt on heating it



above its melting point. Similarly, 3-ethoxy-4-methyl-1phenyl-s-triazolium fluoroborate (4; $R^1 = Ph$, $R^2 = H$, X = NMe, Y = N) was obtained as colourless needles (100%), m.p. 119—120° from anhydro-3-hydroxy-4-methyl-1-phenyl-s-triazolium hydroxide⁹ (3; $R^1 = Ph$, $R^2 = H$, X = NMe, Y = N). Regeneration of the mesoionic compound in this case was readily effected by heat or by passing the salt over a column of alumina. The spectral characteristics of this salt [ν (C=N) 1640, 1610, ν (COC) 1250—1100 (b) cm⁻¹; u.v. max (MeOH) 248 nm, (log ϵ 3·98); n.m.r. [(CD₃)₂SO] τ 8·52 (t, 3H, J 7·0 Hz, -OCH₂CH₃), 6·28 (s, 3H, NCH₃), 5·36 (q, 2H, J 7·0 Hz, -OCH₂CH₃), 2·25 (m, 5H, ArH), -0·61 (s, 1H, 5-H)] were consistent with the assigned structure.

Extension of this alkylation procedure to other fivemembered mesoionic systems with an exocyclic oxygen atom was equally successful. *anhydro*-4-Hydroxy-3-*p*tolyl-1,2,3-thiadiazolium hydroxide¹⁰ (5; R = p-Me·C₆H₄) was readily converted into the corresponding salt (6;

† Satisfactory analytical data were obtained for all new compounds reported.

 $R = p - Me \cdot C_6 H_4$ which formed colourless plates (92%) from ethanol, m.p. 138-140° [v (N=N) 1610, v (COC) 1200—1010 (b) cm⁻¹; u.v. max (MeOH) 317 nm (log ϵ 3.94), 290 (sh) (3.73); n.m.r. [(CD₃)₂SO] τ 8.62 (t, 3H, J 7.0 Hz, $-OCH_2CH_3$), 7.58 (s, 3H, $C_6H_4 \cdot CH_3$), 5.36 (q, 2H, J 7.0 Hz, -OCH₂CH₃), 2·16-2·60 (aromatic AB pattern, 4H, J 8·5 Hz), 0.76 (s, 1H, 5-H)].

These data clearly show that alkylation occurred in all cases at the exocyclic oxygen atom. This is consistent with the protonation of 3-phenylsydnone in "super acid" solution¹¹ and is in agreement with recent M.O. calculations.¹² Conversion of these mesoionic systems into their salts has a pronounced effect on spectral characteristics. In particular, the chemical shifts of the ring protons undergo a large downfield shift and there is a pronounced blue shift of the long wavelength absorption band in their u.v. spectra.

We thank the U.S. Public Health Service, National Cancer Institute, for financial assistance.

(Received, June 15th, 1970; Com. 922.)

¹ M. Begtrup and C. Pedersen, Acta Chem. Scand., 1966, 20, 1555, have reported that anhydro-4-hydroxy-1,3-dimethyl-1,2,3-triazolium hydroxide undergoes methylation with hot methyl iodide. We have found that under comparable conditions anhydro-4hydroxy-1-methyl-3-p-tolyl-1,2,3-triazolium hydroxide does not form the methylated product. ² S. A. Harris, T. J. Webb, and K. Folkers, J. Amer. Chem. Soc., 1940, 62, 3198; K. Mecklenborg and M. Orchin, J. Org. Chem., 1958,

23, 1591.

⁸ Reviews describing these features are: W. Baker and W. D. Ollis, *Quart. Rev.*, 1956, 11, 15; L. B. Kier and E. B. Roche, *J. Pharm. Sci.*, 1967, 56, 149; F. H. C. Stewart, *Chem. Rev.*, 1964, 64, 129.

⁴ E.g. see K. T. Potts, S. K. Roy, and D. P. Jones, J. Org. Chem., 1967, 32, 2245.

¹ J. G. Earl and A. W. Mackney, J. Chem. Soc., 1935, 899.
² M. Ohta and C. C. Shin, Bull. Chem. Soc. Japan, 1965, 38, 704.
⁸ K. T. Potts and C. Sapino, Chem. Comm., 1968, 672.
⁹ K. T. Potts C. K. Parkar, J. D. Larger, 1968, 672.

¹⁰ K. T. Potts, S. K. Roy, and D. P. Jones, J. Heterocyclic Chem., 1965, 2, 105.
 ¹⁰ G. F. Duffin and J. D. Kendall, J. Chem. Soc., 1956, 3189; W. Pachta and B. Prys, Helv. Chim. Acta, 1958, 41, 421.
 ¹¹ G. A. Olah, D. P. Kelly, and N. Suciu, J. Amer. Chem. Soc., 1970, 92, 3133.

¹² K. Sundaram and W. P. Purcell, Internat. J. Quantum Chem., 1968, 2, 145; see also, E. B. Roche and L. B. Kier, Tetrahedron, 1968, 24, 1673.